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Abstract. An algorithm for parametrisation of arbitrary n x n unitary matrices is presented. 
It is given with a minimum number of real parameters out of which a part take values 
in the positive unit cube, the others being arbitrary phases. The case n = 4 is worked out 
in detail. 

1. Introduction 

In many domains of theoretical physics where one is dealing with unitary matrices it 
is useful to have convenient parametrisations of them. Of course there is no unique 
way to parametrise them, the product of two unitary matrices being again unitary, 
the choice of parametrisation depending upon the problems to be solved. Those in 
which the relevant physical quantities are expressed in simple forms are preferred. 

The physicists working in phase shift analyses and multichannel scattering were 
looking for a parametrisation which generalises to an arbitrary dimension n that given 
by Watson (1954) for 2 x 2  unitary matrices, i.e. a parametrisation with a minimum 
set of real parameters consisting of a number of parameters which are non-negative 
and less than or equal to unity and a set of unconstrained phases. 

A parametrisation which satisfies these requirements can be obtained from that 
given in a different context by Murnaghan (1962), but it seems that people working 
in circuit theory and elementary particle physics were not aware of it and carried out 
much work to treat particular cases (Butterweck 1966, Eftimiu 1971, Waldenstrom 
1974, Mennessier and Nuyts 1974, Babelon et a1 1976, Waldenstrom 1981). 

Attempting to develop the work of these authors, I discovered, independently of 
Murnaghan’s work, a new algorithm for constructing a parametrisation of arbitrary 
n x n unitary matrices which is a straightforward generalisation of Watson’s parametri- 
sation. 

The method uses operator techniques and is based on recent work on matrix 
contractions (Arsene and Gheondea 1981, Shmulyan and Yanovskaia 1981). 

The algorithm is recursive, allowing the parametrisation of matrices of dimension 
n through the parametrisation of matrices of dimension n - 2, the parametrisation of 
(n  - 1)-dimensional matrices being directly obtained from it without other computa- 
tions. 

Having in view the considerable interest of such parametrisations for people 
working in circuit theory, phase shift analyses and multichannel scattering, the 
existence of several explicit parametrisations can be useful, the potential users having 
the possibility to choose the most suitable. 
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The structure of the paper is as follows. The algorithm is presented in 9 2. In 9 3 
the case n = 4 is worked out in detail and the paper ends with a few concluding remarks. 

2. General case 

Let S be an n x n unitary matrix written in the form 

where the partition blocks are arbitrary. For definiteness we shall suppose that A is 
an m x m matrix ( m  G n/2). The unitarity condition implies 

(2.14 6, c )  AA* + BB* = I ,  A*A +C*C =I ,  CC* + DD * = I .  

The relations (2.1) are necessary conditions for solving the problem. 
As the matrices AA*, BB*, CC* and DD* are all non-negative operators, the 

relations (2.1) imply that A,  B, C and D are contractions, i.e. operators with norm 
less than or equal to unity. 

Let us suppose that we know a parametrisation of contraction A.  The problem 
then reduces to that of finding B, C and D blocks such that the matrix S be unitary. 
Thus, apparently, the first problem to be solved is the parametrisation of a contraction. 
This can be done using recent results on matrix contractions (Arsene and Gheondea 
1981, Shmulyan and Yanovskaia 1981), but the method we propose here avoids it; 
more precisely, it requires only the parametrisation of the simplest contraction, namely 
of a complex number of modulus less than unity. 

If T is a contraction let DT and DT* be the defect operators defined as 

D= = ( I  - T*T)’/’, DT* = ( I  - 7‘T*)”2, 

which have the property 

TDT = D p  T, T*Dr*= DTT*. 

The matrix blocks B and C are easily constructed using the following result by 
Douglas (1966). 

Lemma 1. Let A and B be bounded operators on a Hilbert space H. The following 
conditions are equivalent. 

(1) Range ( A )  c Range (B) .  
(2) AA* s A *BB* for some constant A > 0. 
(3) A = BC for some bounded operator C on H. 

The unitarity relations ( 2 . 1 ~ )  and (2.16) can be written as 

BB* = D:., C*C = D i .  

According to Douglas’s lemma there exist two contractions U and V such that 

B = Da*U, C = VDa. (2.3) 

In fact U* and V are isometric operators, i.e. they satisfy the relations 

uu* = I ,  v*v=I. (2.4a) 
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These relations imply 

D v = O ,  Du* = 0. (2.4b) 

If B and C are k x k matrices, U and V are unitary operators. Thus the B and 
C matrices are determined by the defect operators D A  and DA* up to some isometries 
U and V which are much simpler operators. 

In order to find the last matrix block we shall use the following result. 

Lemma 2. The formula 

D = -VA*U + Dv*KDu 

establishes a one-to-one correspondence between all the bounded operators D such 
that 

ir; a contraction, and all bounded contractions K. 

The proof of this beautiful result can be found in Arsene and Gheondea (1981) 
and Shmulyan and Yanovskaia (1981). 

A unitary operator being a special case of a contraction, the D block will be of 
the form (2.5), but has to satisfy the unitarity relation ( 2 . 1 ~ ) .  The substitution of (2.3) 
and (2.5) in the relation ( 2 . 1 ~ )  provides us with the relation 

D ~ * K D L K * D ~ *  = 0:. (2.6) 

It is easily seen, owing to relations (2.4), that the non-negative operators Du and 

Let X and Y be those unitary matrices which bring these operators to a diagonal 

which is the condition which will allow us to find K .  

Dv* are orthogonal projections, their eigenvalues being equal to zero and unity. 

form, i.e. 

X*Dv*X = P, Y*DuY = P, (2.7) 
where 

Since we supposed that A is an m x m matrix, the identity operator entering P will 
act on the space of (n  -2m) x (n  -2m) matrices. This is due to the fact that the 
multiplicity of zero as eigenvalue of Du is equal to m. 

Multiplying the relation (2.6) to the left by X *  and to the right by X ,  one gets the 
formula 

PX*KYPY*K*XP = P. (2.8) 
We shall denote by M the matrix 

M = X " K Y  

and we shall write it in the form 
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where MI1 is an (n  -2m)x  (n - 2 m )  matrix. With this notation the relation (2 .8 )  is 
equivalent to 

M11MT1 = I. (2.9) 

The last relation tells us that Mll is an arbitrary unitary matrix. Thus Kis given by 

K = X M Y *  

and with it one gets from (2.5) 

D = - V A * U  +Dv*XMY*DU. 

The relations (2.7) can be written also as 

Dv*X =XP, Y*Du = PY*,  

so that 

D = - V A  * U +XPMPY *. 
But 

In this way we obtain the final form for D 

D = - V A * U +  471 ; ) Y *  (2.10) 

which shows that D is completely specified by the matrices A ,  U, V and M11. 

The formulae (2.3) and (2.10) give the required parametrisation. At this stage it 
is evident that we did not use the off-diagonal conditions like AC* +BD* = 0. The 
reason is that they are redundant, and this originates in lemmas 1 and 2 which give 
necessary and sufficient conditions for solving the problem. One easily sees that the 
off -diagonal conditions are identically satisfied. For example, we have 

0 = A C  * + BD * = ADA V *  - DA* UU*A V* + DA* UDuK *Dv* 

= ADAV* - DA*A V *  + DA*Du*UK*Dv* 

= (ADA-DA*A)V* = 0 

where we have used the properties ( 2 . 2 )  and (2.4). 
Therefore the parametrisation of an n x n  unitary matrix is equivalent to the 

parametrisation of a contraction A ,  of a unitary matrix MI1 and two isometries U* 
and V. As all these objects have lesser dimensions than those of the original matrix 
S ,  our task is considerably simplified. In fact, the above procedure is a recursive one 
as can be easily seen. 

We suggest taking the contraction A as simple as possible, namely a complex 
scalar such that its parametrisation is A = a exp (icp) with 0 6 a s 1 and cp an arbitrary 
phase. Thus the defect operators DA and DA* are scalar functions and are given by 

2 1 / 2  D A = D A * = ( l - a  ) . 
In our choice U and V are row and column vectors respectively, 

( U ) ,  = U,, (VI, = U,, j = l , 2  , . . . ,  n - 1 .  
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The conditions ( 2 . 4 ~ )  imply 
n-1  n -1  

i = l  i = l  

2 
IUi l2=  = I .  (2.11) 

The parametrisation of a vector U whose components ui satisfy the relation (2.11) 
is direct. The main practical problem is the finding of X and Y matrices which 
diagonalise the defect operators Dv and Dv*. As is well known, they are given by 
the orthonormal eigenvectors of the corresponding operators arrayed columnwise. 

One easily sees that det(DL-AI) = (A - l)"-'(A - 1 -Ci",;'lui12) and this shows 
indeed that Du is an orthogonal projection as we said before. Since ZYZ~lui12 = 1, its 
eigenvalues are A = 0 and A = 1, the multiplicity of the latter being equal to n - 2. 
The eigenvectors with A = 1 span an (n -2)-dimensional vector space that is given 
by the relation 

n-1  
aiui = 0 (2.12) 

i = l  

where by ai we have denoted the components of a generic vector a. For A = O  the 
eigenvector is 

(2.13) 

where a bar means complex conjugation. 
It is easy to find n - 2  eigenvectors that satisfy the relation (2.12) but, in general, 

they will not be orthogonal. For practical purposes we suggest using the following 
base of eigenvectors which for high values of n leads to many zeros among the matrix 
elements of X and Y: 

(a  '-*I. = cj, j =  1 , 2 , .  . . , n - 1  

(2.14) 

j =  1 , 2 , .  . . , n - 1 ,  k = 1 , 2 , .  . . , [n/2]- 1. 

If n is odd we may add to (2.14) the vector 

j = 1 , 2  ,..., n - 1 .  (2.15) 

The eigenvectors (2.13), (2.14) and (2.15) are orthogonal by construction. For 
the remaining ones we take 

j = 1 , 2 , .  . . , n  -1,  k = l , 2  , . . . ,  [n/2]-1, (2.16) 

where 
I UkUn - 11 

a (k) = 2 2 1 / 2 *  
[(IUkl2+ Iun-k-112)(IUkl +Iutt-k-112+Iun-11 )I 

These last vectors are not orthogonal to each other, although they are orthogonal 
on the system (2.13)-(2.15). We can orthogonalise them by the usual Gram-Schmidt 
procedure. 
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Before, we supposed all U,  # 0. If one or more U,  are equal to zero, a number of 

(a , ) ,  =a,, (2.17) 

and it is evident how we have to modify our system of eigenvectors (2.14)-(2.16) in 
order to be orthogonal on the vectors (2.17). In this way the construction of X and 
Y matrices is finished. 

With our choice of A,  Mll is an ( n  - 2) x (n  - 2) matrix, so if we succeeded in 
parametrising a unitary matrix this one can be used as input in the parametrisation 
of another one of higher dimension. This recursive feature of our approach makes it 
very appealing for practical calculations. 

The U and V vectors whose components satisfy (2.1 1) are easily parametrised by 
a number of real and independent parameters a,, 0 s a, s 1 and a number of arbitrary 
phases. Since a 2 x 2 unitary matrix is parametrised in the same manner, the above 
mentioned recursive feature allows us to state that our parametrisation will preserve 
all the characteristic features of the two-dimensional one. 

eigenvectors will be of the form 

3. Parametrisation of 4 x 4 unitary matrices 

The relations (2.11) have the form 

lull2+ 1u2I2 + lu3I2 = 1u1I2 + Iv2I2 + Iu3I2 = 1 

and a parametrisation of U and V is 

U I =  6 exp(icp1A ~ 2 = ~ ( 1 - 6 ~ ) ” ~ e x p ( i c p ~ ~ ) ,  

u3 = [(I  - b 2 ) ( 1  - c  11 
u2 =!(I -d2)1’2 exp(icpsl), 03 =[(I -d2)(1 -f 11 exp(icp41). 

X and Y matrices are 

01 = d e x p ( i ~ d ,  2 1/2 exp(icpd, 

(3.1) 2 112 

j of( 1 - d 2 ) 1 ’ 2  a d [ ( l  -dZ]( l - fZJ] l /z  d exp(icp211 
X =  -ad expi(cp3,-cpZ1) af(l-d2)(1-f2)’/zexpi(cp31-cp21) f ( l - d 2 ) ” 2 e ~ p ( i ~ 3 1 )  

[(I - d 2 ] ( 1  - j2)]1’2 exp(icp41) -1 0 -a exp i ( ( P 4 1 - ( F Z 1 )  

, 2 2 -1 /2  where cy = ( f ’ + d 2 - f  d ) 

pb[(l - b z ) ( l  -c2)]’/’ b exp(-icplJ 

exp i ( c p 1 2 - c p ~ 4 )  [ ( I - ~ ~ ) ( I - C ~ ) ~ ’ / ~  exp(-icp14), -p -1  

where /3 = (62+c2-62c2)-1’2, M11 is an arbitrary 2 x 2  unitary matrix that we take 
in the form 

(3.3) h e x p ( i d  (1 - 2)1’2 exp(icpz3) 
M11=( ( l -h2)1 /2e~p( i cp32)  - h  e~p i (cp~~+cp~~-cp22)  

We have the following notation: 



Parametrisation of unitary matrices 3471 

where T means transpose, 
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s4l= [(I -a2)(1 -d2)(1 -f )I 
s 4 2 =  -ab[(1 -d2)(1 --f2)P” exp[i(q12+(~41-(~11)1 

2 112 e x p ( i q 4 ~  

- ~ ’ ( 1 - b ) ’ ”  exp[i(cp3z+q41-(021)1 

X{C(I - h 2 ) 1 / 2 - b h ( ~  -c2)1/2 exp[i(cp23-q22)]), 

s 4 3 =  -ac[(1 -b2)(1 -d2)(1 -f2)1’/2 exp[i(q13+q41-q11)1 

+cup-’ exp[i(q32 + vi3 + q 4 1 -  q 1 2  - fp2 i ) l  

x {b (1 - h2)’l2 + ch (1 - b2)(1 - c2)1/2 exp[i(qzs - (022)~}, 
2 112 s~~ = -a[( l  -b2)(1 -c2)(1 -d2)(1 -f )I exp[i(q14+(041-(~11)I 

- cvph exP[i(q14 + 9 4 1  + 5023 +t(p32 - q l 2  -(P21 -(022)1. 

For symmetric matrices Sii = Sji the parameters satisfy the supplementary conditions 

b = d ,  c =f, q 1 2  = q 2 1 ,  q 1 3  = (P31, (014 = (p41, (023=(P32* 

From a parametrisation of an n x n unitary matrix we can easily obtain the 
parametrisation of an ( n  - 1) x (n - 1) matrix by setting Sni = Si, = 0, i = 1,2 ,  . . . , n - 1, 
S,, = exp(il//). Thus the above parametrisation provides us with a parametrisation of 
3 x 3 unitary matrices and it is obtained from (3.4) by setting c = f =  h = 1. The 
particular case 9 1 1  = q 1 3  = q z l  = (031 = 0 and q12 = T of this last parametrisation gives 
the fermion mass matrix in the form introduced by Kobayashi and Maskawa (1973). 

4. Concluding remarks 

The recursive feature of the approach allows us to find the numbers p ( n )  and ~ ( n )  
of inelasticity parameters and phases respectively which enter the parametrisation for 
arbitrary n. For the non-symmetric case (Sii # Sji) it is easily seen from the relations 
(2.10) and (2.11) that p ( n )  and q ( n )  satisfy the equations 

p (n )=2n-3+p(n -2 ) ,  q ( n ) = 2 n - l + q ( n - 2 ) ,  

with the initial conditions 

P(1) = 0, €4) = 1, q(1) = 1, ( ~ ( 2 )  = 3. 

The solutions of the above equations are 

p ( n )  = n ( n  - 1)/2, r p b )  = n(n + 1)/2, n = 1,2,  . . . . 
For symmetric matrices the result is 

p ( n )  = En/2l[(n + 1)/21, cc(n) = [(n + 1)/2l[(n +2)/21, n = 1 , 2 , .  . * ,  
where [r] denotes the integral part of r. 

A parametrisation of a unitary matrix is unique modulo a multiplication by another 
unitary matrix. This arbitrariness might be useful in some cases. Until now all the 
matrix elements Sij have been considered as pure complex numbers, but in many 
problems from particle physics they are more, they are boundary values of analytic 
functions. Thus naturally a problem arises: given a contraction A which is the boundary 
value of an analytic function, find the analytic matrix blocks B, C and D such that 
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matrix S be unitary. No simple solution of this problem seems to exist, though its 
solution would be of much practical interest for elementary particle applications and 
here the above-mentioned arbitrariness might be useful. 

Applications of our parametrisation in particle physics will be given elsewhere. 
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